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The missing data problem pervasively exists in statistical applications.
Even as simple as the count data in mortality projections, it may not be
available for certain age-and-year groups due to the budget limitations or
difficulties in tracing research units, resulting in the follow-up estimation
and prediction inaccuracies. To circumvent this data-driven challenge, we
extend the Poisson log-normal Lee-Carter model to accommodate a more
flexible time structure, and develop the new sampling algorithm that im-
proves the MCMC convergence when dealing with incomplete mortality data.
Via the overdispersion term and Gibbs sampler, the extended model can be
re-written as the dynamic linear model so that both Kalman and sequential
Kalman filters can be incorporated into the sampling scheme. Additionally,
our meticulous prior settings can avoid the re-scaling step in each MCMC it-
eration, and allow model selection simultaneously conducted with estimation
and prediction.

The proposed method is applied to the mortality data of Chinese males
during the period 1995-2016 to yield mortality rate forecasts for 2017-2039.
The results are comparable to those based on the imputed data set, suggest-
ing that our approach could handle incomplete data well.
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1 INTRODUCTION

Population structure always plays an important role in the socio-economic policy de-
cisions. For example, the rapid change of life expectancy keeps affecting and altering
the current retirement systems, healthy cares, and annuities. It also has a great impact
on government allocation of funds and intergenerational resource transfer (Tuljapurkar
and Boe, 1998; Miller, 2001; Huang et al., 2018). Therefore, mortality projections that
provide a glimpse of future population structures have become a focus in modern demo-
graphics.

The Lee-Carter (LC) model (Lee and Carter, 1992), which was originally developed
for the U.S. mortality projections, has now been widely implemented in different types
of mortality data due to its seminal and easily interpreted log-bilinear structure. In the
proposed framework, the observed log mortality rates are first decomposed into the age
and time related effects via the singular value decomposition (SVD), and then based on
the estimated time effects, a separate time series model is fitted to obtain the future
trajectory of mortality. Clearly, as the output of this two-stage analysis, the prediction
intervals only preserve uncertainty from the second model and are underestimated. In
the light of this, Pedroza (2006) develops the Bayesian LC model to properly incorporate
all sources of variability into mortality projections. The proposed method also improves
the Markov chain Monte Carlo (MCMC) convergence when missing data exists by intro-
ducing the Kalman filter into the sampling scheme. Following this line, Li et al. (2019)
further develop the sequential Kalman filter to grant the investigators flexibility in han-
dling missing data. Specifically, when missing mechanisms are not clear or heterogeneity
is suggested between observations and missing ones, the modified algorithm can directly
handle the incomplete data set without imputations.

Besides modeling on the observed mortality rates, it is reasonable to assume the
number of deaths following a Poisson distribution with mean equal to the population
size multiplied by the underlying true mortality rate, which is hierarchically controlled
by the age and time effects. Driven by this thought, Brouhns et al. (2002a,b) utilize
both death counts and exposures at risk in the model fitting and develop the Poisson
LC (PLC) model. Although this Poisson framework has a limitation in handling the
count data with overdispersion, Wong et al. (2018) propose the Poisson log-normal LC
(PLNLC) model to address this issue. Other related efforts to relax this restriction can
be found in Delwarde et al. (2007), Renshaw and Haberman (2006), and Li et al. (2009).

In this work, we find a gap between the applications of Poisson Lee–Carter framework
and incomplete mortality data. To allow incomplete data directly handled under the
Poisson framework, we extend the PLNLC model to a more general time structure, and
through the Gaussian overdispersion term and an MCMC sample of the mortality rates,
we successfully combine the sequential Kalman filter into the Gibbs sampler to improve
the MCMC algorithm. In some sense, the proposed method can be viewed as a twins
work of Li et al. (2009). Also, inspired by Wong et al. (2018) and Liu et al. (2020),
this model features with two meticulous prior settings: first, we adopt the priors of age
effects subjected to the constraints to skip the re-scaling step in each iteration; secondly,
we consider the dirac spike (Malsiner-Walli and Wagner, 2011) together with the time
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structure model so that the competing nested structures can be compared and selected
in one single analysis.

The remainder of this paper is organized as follows. In Section 2, we review the
recent developments of the LC model. Section 3 provides the details of the proposed
model and its prior specifications. Section 4 develops the MCMC sampling algorithm
for both complete and incomplete data. In Section 5, the proposed method is applied
to the incomplete mortality data set of Chinese males in the years 1995-2016. For the
comparison purposes, the results based on SVD-imputed complete data are also provided.
At last, we conclude with a discussion in Section 5.

2 REVIEW OF RECENT MORTALITY MODELS

Suppose the mortality data records the death tolls Dx,t for M age groups across N
years; i.e., x ∈ Θage = {1, 2, . . . ,M} and t ∈ Θtime = {1, 2, . . . , N}, and let Ex,t denote
the corresponding population size at the risk. Pedroza (2006) formalized the Bayesian
version of LC model (Lee and Carter, 1992) to properly present the uncertainty of
mortality projections, and incorporated multiple imputations (Rubin,1987) to address
the missing data problems. Based on the observed mortality rates mx,t = Dx,t/Ex,t, the
joint model is given by

log(mx,t) = αx + βxκt + εx,t, (2.1)

κt = θ + κt−1 + ωt, (2.2)

where αx is the age-specific intercept denoting the average log mortality rate at age x
over N years under the constraints

∑
x∈Θage

βx = 1 and
∑

t∈Θtime
κt = 0, βx is the mea-

sured sensitivity of each age group to the overall trend of mortality that is captured by

κt in a random walk with drift model (2.2), θ is the drift term, and εx,t
iid∼ N(0, σ2

ε) and

ωt
iid∼ N(0, σ2

ω). Unlike the original LC model, the error terms in (2.1) have Gaussian
specifications. As a result, all full conditionals for the Gibbs sampling are analytically
tractable if conjugate priors are assigned, and Kalman filter (Harvey, 1991) can be im-
plemented to improve efficiency of MCMC sampling. Specifically, Kalman filter consists
of the filtering and smoothing processes, which rely on the up-to-now (from the 1st to
tth year) and beyond-time-t (from the (t + 1)th to N th year) information, respectively,
to form the full conditional distribution of κt.

As pointed out by Li et al. (2019), however, the aforementioned method may fail
to obtain a convergent MCMC sample if the initial values for a Gibbs sampler are
not chosen carefully, especially when the case contains a large proportion of missing
data. To circumvent this difficulty, Li et al. (2019) proposed the new procedure to
generate these values that are sufficiently close to the stationary state for the Gibbs
sampler. They also claimed that only missing values appearing in a sporadic manner
require imputations since those shown as blocks can be viewed as missing completely
at random, and leaving them blank does not affect the follow-up analyses. Accordingly,
they developed the abridged multiple imputation, and based on this partially imputed
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data set, adopted the sequential Kalman filter Koopman and Durbin, 2000) to update
κt’s in each iteration. The details of Kalman and sequential Kalman filters are hold till
Section 4 about our sampling algorithms.

Another thread of derivations of the classic LC model can be traced back to Brouhns
et al. (2002a,b), where the observed death count Dx,t is assumed following a Poisson
distribution with mean equal to Ex,t times unknown mortality rate µx,t := exp(αx+βxκt).
Proceeding in this fashion, the proposed PLCmodel distinguishes the cases with the same
observed mortality rate but different exposure sizes so that utilizing more information
from data. Wong et al. (2018) further developed the PLNLC model to accommodate
overdispersion, commonly present in the Poisson applications, by introducing the random

effects εx,t
iid∼ N(0, σ2

ε) to the PLC model as follows

Dx,t | µx,t ∼ Poisson(Ex,tµx,t),

log(µx,t) = αx + βxκt + εx,t. (2.3)

Consequently,

Var(Dx,t | µx,t) =E[Var(Dx,t | µx,t, εx,t)] + Var[E(Dx,t | µx,t, εx,t)]

=E(Dx,t | µx,t)× {1 + E(Dx,t | µx,t)× [exp(σ2
ε)− 1]} ≥ E(Dx,t | µx,t),

and thus (2.3) can handle count data having greater variability than its expectation.
Wong et al. (2018) also adopted the new pair of constraints

∑
x∈Θage

αx = 1 and κ1 = 0
to directly embed in the prior specifications of βx’s and κt’s. Different from the MCMC
sampling algorithms in Pedroza (2006) and Li et al. (2019) requiring the re-scaling
adjustments in each iteration to meet the constraints (this adjustment seems lacking of
theoretical justifications), the proposed algorithm simplifies the sampling procedure for
βx’s and κt’s, and avoid the potential issue in ergodic conditions.

Motivated by Wong et al. (2018) and Li et al. (2019), we propose the new Bayesian
approach to address the mortality projections complicated with missing data under the
Poisson framework. Specifically, we follow the PLNLC model but provide a new insight

of εx,t in (2.3): not only accommodating overdispersion but also having log(µx,t)
iid∼

N(αx + βxκt, σ
2
ε). With such a Gaussian expression, Kalman and sequential Kalman

filters can now be implemented to improve efficiency of MCMC sampling given that
log(µx,t) is available. To this end, we simply involve log(µx,t) in MCMC sampling, and
state space form of PLNLC is hold for the full conditional distribution of κt. We also
extend (2.2) to a more general setting to fit mortality data with more varieties of time
trends; meanwhile, inspired by Liu et al. (2020), the dirac spike prior (Malsiner-Walli and
Wagner, 2011) is used to conduct model selection on the time structure simultaneously
with estimation. Lastly, to embed the constraints in the prior specifications as Wong
et al. (2018) and keep the state space form of PLNLC, we alter the constraints as∑

x∈Θage
αx = 0 and

∑
x∈Θage

βx = 1.



Bryan Engelhardt & Edward Soares 5Journal of Econometrics and Statistics 5

3 THE PROPOSED MODEL AND ITS PROPERTIES

Let θ1 stand for the drift term θ in (2.2) while θ2 is the additive slope of a random walk
with drift model, our proposed joint model is given by

Dx,t | µx,t ∼ Poisson(Ex,tµx,t), (3.1)

log(µx,t) = αx + βxκt + εx,t, (3.2)

κt = κt−1 + θ1 + θ2t+ ωt, (3.3)

where κ0 ∼ N(µκ0 , σ
2
κ0
), and µκ0 and σ2

κ0
are pre-specified values. Although it appears

that this model is the same as PLNLC by Wong et al. (2018) except that a more general
setting of the time structure is considered, we highlight our differences and novelties in
the following three subsections. Throughout the paper, we use the superscript T as the
transposition of a vector or a matrix. We also introduce the notations 0n, Jn, and In to
represent a vector of zeros with size n, a vector of ones with size n, and an identity matrix
with size n, respectively. For convenience, if no specifications on bounds,

∑
x =

∑
x∈Θage

and
∑

t =
∑

t∈Θtime
.

3.1 Conditional State Space Form of PLNLC

First, with the Gaussian specifications of εx,t and ωt, the PLNLC model is readily ex-
pressed in a state space form, where (3.2) and (3.3) separately serve as observation and
state equations in the Kalman filter. However, due to the unobservable log(µx,t), the
linear quadratic estimation for κt is still hindered from use. To circumvent this difficulty,
we let the latent variable log(µx,t) involved in a Gibbs sampler. Specifically, based on
(3.1) and (3.2), the full conditional π

(
log(µx,t) | Dx,t, αx, βx, κt, σ

2
ε

)
is proportional to

an analogously Gaussian kernel as follows

µ
Dx,t

x,t exp

[
−Ex,tµx,t −

1

2σ2
ε

(log(µx,t)− αx − βxκt)
2

]
. (3.4)

Accordingly, assuming that log(i)(µx,t), the ith iteration of log(µx,t), is available, we

propose log′(µx,t) ∼ N(log(i)(µx,t), σ
2
x,t) with a pre-specified σ2

x,t to update

log(i+1)(µx,t) =

{
log′(µx,t) if u ≤ φ(log′(µx,t), log

(i)(µx,t)),

log(i)(µx,t) otherwise,

where u ∼ Uniform(0, 1) and

φ
(
log′(µx,t), log

(i)(µx,t)
)
= min (1, S) ,

with

S =
(
µ′
x,t

µ
(i)
x,t

)Dx,t

exp

{
−Ex,t(µ

′
x,t − µ

(i)
x,t)−

1

2σ2
ε

log

(
µ′
x,t

µ
(i)
x,t

)[
log(µ′

x,tµ
(i)
x,t)− 2αx − 2βxκt

]}
.
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Once log(µx,t) is attained in the Metropolis-within-Gibbs algorithm, the Kalman and
sequential Kalman filters can be implemented. As shown that this realization is contin-
gent on the Gibbs sampler, we name this feature as the conditional state space form of
PLNLC.

It is also worth mentioning that the chosen values of σ2
x,t’s affect the acceptance rates of

log′(µx,t)’s. To ensure the acceptance rates between 0.15 and 0.5, the interval suggested
by Roberts and Rosenthal (2001), we adopt the trial and error search procedure proposed
by Wong et al. (2018) to determine σ2

x,t’s. In particular, we start with an initial value
0.01 for all σ2

x,t’s, and evaluate their acceptance rates every 100 iterations. If any rates
are above 0.5 (or below 0.15), we double (or halve) the values of corresponding σ2

x,t’s in
the next 100-iteration cycle; otherwise, keep them the same. We repeat this searching
procedure till the 20th cycle.

3.2 Model Selection on Time Structure

As previously mentioned, (3.3) presents a more flexible setting of time structure, and
can reduce back to a random walk with drift model when θ2 = 0. To allow the data
to reflect its own structure, that is, θ2 is zero or non-zero, and avoid additional model
selection procedure, we propose the dirac spike prior on θ2 as follows

θ2 ∼ zN (0, ζ) + (1− z)π,

z ∼ Bernoulli(p0),

where z is a binary indicator with z = 1 favoring the full model of time structure while
z = 0 favors the reduced one, ζ is a random scalar controlling the variation of non-zero
θ2, π is a point mass at zero, and p0 is a prior belief of probability that θ2 is non-zero.
Under such a setting, a Gibbs sample of z is updated with the conditional posterior
probability

p̃ = 1− 1− p0

1− p0 + p0

√
σ2
ω

ζ
∑

t t
2+σ2

ω
exp

{
[
∑

t t(κt−κt−1−θ1)]
2
ζ

2σ2
ω(

∑
t t

2ζ+σ2
ω)

} .

We then can find out the best fitted time structure by simply taking the average of an
MCMC sample of z, i.e., if the value is greater than 0.5, the more complicated structure
is selected; otherwise, a random walk with drift model.

3.3 Prior Specifications Subjected to the Constraints

As the LC model becomes a benchmark stochastic model for mortality data, some po-
tential issues and limitations regarding to the constraint

∑
t κt = 0 have been discussed.

For example, under a random walk with drift model, this constraint implies θ in (2.2)
converges in probability to zero as N goes infinite (Liu et al., 2019). It is also pointed
out that in the presence of missing mortality rates, having a prior of κt incorporated
with this constraint is not applicable in that the covariance matrix of all κt’s except
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one in the full conditional is close to singular, resulting in numerical instability (Li et
al., 2019). . Hence, a separate step of re-scaling an MCMC sample is required in each
iteration. In view of these, we adopt the constraints

∑
x αx = 0 and

∑
x βx = 1 by Liu

et al. (2019) into our Bayesian framework. Similar to
∑

x αx = 1 and κ1 = 0 by Wong
et al. (2018), the constraints can be easily embedded into the prior specifications of
αx’s and βx’s. However, unlike placing κt-related constraints, the state equation in the
Kalman filter remains simple and straightforward in expression. Under such a setting,
κt also enjoys a nice interpretation as an aggregation of log mortality rate in the tth year
due to

∑
x

log(µx,t) ≈
∑
x

αx +
∑
x

βxκt

⇒κt ≈
∑
x

log(µx,t).

To incorporate the constraints into the prior distributions, we start with the normal
prior

[
α

β

]
∼ N

([
µα

µβ

]
,

[
σ2
αIM 0

0 σ2
βIM

])
, (3.5)

where α = (α1, α2, . . . , αM )T , β = (β1, β2, . . . , βM )T , and µα = (µα1 , µα2 , . . . , µαM )T

and µβ = (µβ1 , µβ2 , . . . , µβM
)T are pre-specified means while σ2

α and σ2
β are the corre-

sponding scales for variances. Accordingly, followed by the conditional property of a
multivariate normal, (3.5) subjected to the constraints can be written as

[
α−M

β−M

]
∼ N

(
µp, Σp

)
, (3.6)

where α−M = (α1, α2, . . . , αM−1)
T , β−M = (β1, β2, . . . , βM−1)

T , µp = µ1−Σ1Σ
−1
2 (µ2−

a), Σp = Σ3 − Σ1Σ
−1
2 ΣT

1 , µ1 = (µT
α,−M ,µT

β,−M )T , µα,−M = (µα1 , µα2 , . . . , µαM−1)
T ,

µβ,−M = (µβ1 , µβ2 , . . . , µβM−1
)T , µ2 = (

∑
x µαx ,

∑
x µβx)

T , a = (0, 1)T ,

Σ1 =

[
σ2
αJM−1 0M−1

0M−1 σ2
βJM−1

]
,Σ2 =

[
Mσ2

α 0

0 Mσ2
β

]
,

and

Σ3 =

[
σ2
αIM−1 0M−10

T
M−1

0M−10
T
M−1 σ2

βIM−1

]
.

Once α−M and β−M are updated based on (3.6) in an iteration, αM and βM are auto-
matically determined from αM = −α1−α2−· · ·−αM−1 and βM = 1−β1−β2−· · ·−βM−1,
respectively. For other parameters in the model, we propose the following priors

σ2
α ∼ Inv-Gamma(aσ2

α
, bσ2

α
),
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σ2
β ∼ Inv-Gamma(aσ2

β
, bσ2

β
),

f(σ2
ε) ∝

1

σ2
ε

,

f(θ1) ∝ 1,

ζ ∼ Inv-Gamma(aζ , bζ),

f(σ2
ω) ∝

1

σ2
ω

,

where aσ2
α
, bσ2

α
, aσ2

β
, bσ2

β
, aζ and bζ are pre-specified hyperparameters.

4 MCMC SCHEME FOR THE PROPOSED MODEL

In this section, we develop the posterior sampling strategies separately for the com-
plete and incomplete data sets. The proposed algorithm is a hybrid of the Gibbs and
Metropolis-Hasting samplings, and the Kalman and sequential Kalman filters. Since the
full conditionals for each parameter except κt’s are either the same for both scenarios
or can be written as functions of binary indexes 1x,t’s, where 1x,t = 0 or 1 represents
the corresponding Dx,t is missing or observed, respectively, we first present those results
in Sections 4.1 and 4.2. Followed by Sections 4.3 and 4.4, the Kalman and sequential
Kalman filters are provided to update κt’s for the two scenarios.

4.1 Updating Parameters σ2
α, σ

2
β, θ1, z, θ2, ζ, and σ2

ω

Let the notation “ | .” represent “conditional on all other parameters and the data”, the
full conditional distributions of σ2

α, σ
2
β , θ1, z, θ2, ζ, and σ2

ω are

σ2
α | . ∼ Inv-Gamma

(
aσ2

α
+

M − 1

2
, bσ2

α
+

1

2
α̃T

−M

(
IM−1 −

1

M
LM−1

)−1

α̃−M

)
,

σ2
β | . ∼ Inv-Gamma

(
aσ2

β
+

M − 1

2
, bσ2

β
+

1

2
β̃
T
−M

(
IM−1 −

1

M
LM−1

)−1

β̃−M

)
,

θ1 | . ∼ N

(
κN − κ0 − θ2

∑
t t

N
,
σ2
ω

N

)
,

z | . ∼ Bernoulli(p̃),

θ2 | . ∼

{
N

(
ζ
∑

t t(κt−κt−1−θ1)
σ2
ω+ζ

∑
t t

2 , ζσ2
ω

σ2
ω+ζ

∑
t t

2

)
if z = 1,

π if z = 0,

ζ | . ∼

{
Inv-Gamma

(
aζ +

1
2 , bζ +

θ22
2

)
if z = 1,

Inv-Gamma (aζ , bζ) if z = 0,

σ2
ω | . ∼ Inv-Gamma

(
N

2
,

∑
t(κt − κt−1 − θ1 − θ2t)

2

2

)
,

where α̃−M = α−M − µα,−M , β̃−M = β−M − µβ,−M , LM−1 = JM−1J
T
M−1.
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4.2 Updating Parameters log(µx,t), αx, βx and σ2
ε

Essentially, the M-H procedure for log(µx,t) is the same as the steps in Section 3.1 except
that the modified full conditional distribution is needed to accommodate the situation
when Dx,t is missing. Specifically, we incorporate 1x,t into (3.4)

π (log(µx,t) | .) ∝ µ
Dx,t

x,t exp

[
−Ex,tµx,t −

1

2σ2
ε

(log(µx,t)− αx − βxκt)
2

]
1x,t.

It is clear when 1x,t = 0, log(µx,t) can not be updated due to unavailability of Dx,t. As
1x,t = 1, we follow the trial and error method in Section 3.1 to find the ideal value of
σ2
x,t for the proposed density.

Let y∗
−M,t = (log(µ1,t)11,t, log(µ2,t)12,t, . . . , log(µM−1,t)1M−1,t)

T , and following the
prior setting in (3.6), αx and βx are updated via




α−M ,β−M | . ∼ N(µ̃p, Σ̃p),

αM = −α1 − α2 − · · · − αM−1,

βM = 1− β1 − β2 − · · · − βM−1,

where µ̃p = Σ̃p(µd + µT
pΣ

−1
p ), Σ̃p = (Σd +Σ−1

p )−1, µd = (µT
d1
,µT

d2
)T , Σd =

[
A B

B C

]
,

µd1 =
1

σ2
ε

[∑
t

y∗
−M,t +

∑
t

(κt − log(µM,t)) 1M,t × JM−1

]
,

µd2 =
1

σ2
ε

[∑
t

κt × y∗
−M,t +

∑
t

κt (κt − log(µM,t)) 1M,t × JM−1

]
,

A =




∑
t 11,t 0 . . . 0

0
∑

t 12,t . . . 0
...

...
. . .

...

0 0 . . .
∑

t 1M−1,t



+

(∑
t

1M,t

)
× JM−1J

T
M−1,

B =




∑
t κt11,t 0 . . . 0

0
∑

t κt12,t . . . 0
...

...
. . .

...

0 0 . . .
∑

t κt1M−1,t



+

(∑
t

κt1M,t

)
× JM−1J

T
M−1,

and

C =




∑
t κ

2
t11,t 0 . . . 0

0
∑

t κ
2
t12,t . . . 0

...
...

. . .
...

0 0 . . .
∑

t κ
2
t1M−1,t



+

(∑
t

κ2t1M,t

)
× JM−1J

T
M−1.
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As for σ2
ε , its full conditional is conjugate and given by

σ2
ε | . ∼ Inv-Gamma

(∑
x

∑
t 1x,t

2
,

∑
x

∑
t (log(µx,t)− αx − βxκt)

2 1x,t

2

)
.

4.3 Kalman filter for κ

For the complete data set, we can rewrite (3.2) and (3.3) as the state space form (or
known as dynamical linear model). The so-called observation and state equations are
separately given by

yt = Ftmt + vt, vt ∼ N(0M , Vt), (4.1)

mt = Gtmt−1 +wt, wt ∼ N(03, Wt), (4.2)

where yt = (log(µ1,t), log(µ2,t), . . . , log(µM,t))
T , mt = (1, κt, t + 1)T , wt = (0, ωt, 0)

T

vt = (ε1,t, ε2,t, . . . , εM,t)
T , Ft =

[
α β 0M

]
, Vt = σ2

ε × IM ,

Gt =




1 0 0

θ1 1 θ2

t+ 1 0 0


 , and Wt =



0 0 0

0 σ2
ω 0

0 0 0


 .

In the Gibbs sampler, yt is readily used to improve the full conditional of κt in the
following manner. Let D1�→t = {y1,y2, . . . ,yt} denote the data containing all up-to-now
information, and define “ | .(1�→t)” = “ | α,β, θ1, θ2, σ

2
ε , σ

2
ω, κ1, κ2, . . . , κt−1, D1�→t”. The

filtering process utilizes D1�→t to recursively update κt from t = 1 to t = N . Specifically,
following Campagnoli et al. (2009), we have t | .(1�→t) ∼ N

(
E(t| .(1�→t)),Var(t| .(1�→t))

)
with

E(t| .(1�→t)) = GtE(t−1| .(1�→t−1)) +Ktet,

Var(t| .(1�→t)) = Rt −KtFtRt,
(4.3)

where Kt = RtF
T
t (Vt + FtRtF

T
t )

−1, et = yt − FtGtE(t−1| .(1�→t−1)), Rt = GtVar(t−1|
.(1�→t−1))G

T
t + Wt. Since et measures the difference between true yt and its expecta-

tion based on all other parameters and data up to time t − 1 except κt−1, it provides
a correction transformed by Kt on E(t| .(1�→t)). Without this correction, the condi-
tional expectation is merely derived from the state equation. Similarly, FtRt plays
the same role on Var(t| .(1�→t)) via Kt. Also, note that E(0| α,β, θ1, θ2, σ

2
ε , σ

2
ω) and

Var(0| α,β, θ1, θ2, σ
2
ε , σ

2
ω) are estimated by the LC model using SVD approach.

Once κN is retained from the forward algorithm above, it is reversely integrated to
the conditional mean and covariance of the previous term in the smoothing process.
Proceeding in this fashion, we obtain κt sequentially from t = N − 1 to t = 1 via
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t | .(1�→t), κt+1 ∼ N
(
E(t| .(1�→t), κt+1),Var(t| .(1�→t), κt+1)

)
with

E(t| .(1�→t), κt+1)

=E(t| .(1�→t)) + Var(t| .(1�→t))G
T
t+1R

−1
t+1

[
t+1 −Gt+1E(t| .(1�→t))

]
(4.4)

and

Var(t| .(1�→t), κt+1)

=Var(t| .(1�→t))−Var(t| .(1�→t))G
T
t+1R

−1
t+1Gt+1Var(t| .(1�→t)). (4.5)

Now, κN from the filtering process and κN−1, κN−2, . . . , κ1 from the smoothing process
jointly form one iteration in the MCMC sample.

4.4 Sequential Kalman filter for κ

n the presence of missing data, due to unavailability of some logµx,t’s, the aforementioned
filtering process that aims to update all information of yt at once to the conditional mean
and variance of κt is hindered from used. To this end, we modify (4.3) as the sequen-
tial Kalman filter (Koopman and Durbin, 2000) to allow logµ1,t, logµ2,t, . . . , logµM,t

sequentially formulating the conditional structure of κt in the forward algorithm. First,
let D1�→tx = {y1,y2, . . . ,yt−1, log(µ1,t), log(µ2,t), . . . , log(µx,t)} and “ | .(1�→tx)” = “ |
α,β, θ1, θ2, σ

2
ε , σ

2
ω, κ1, κ2, . . . , κt−1,D1�→tx”. Also, rewrite (3.2) and (3.3) as

log(µx,t) = αx + βxκx,t + εx,t,

and

κx,t =

{
θ1 + θ2t+ κM,t−1 + ωt if x = 1,

κx−1,t if 1 < x ≤ M,

where κx,t remains constant across different age groups at time t and can be viewed
as a hidden state affecting log(µx,t). In return, this observed log(µx,t) can be used to
determine the conditional structure of κx,t, i.e. E(κx,t | .(1�→tx)) and Var(κx,t | .(1�→tx)).

Accordingly, we develop the following recursive equations for our proposed model:
when x = 1 and

∑
x 1x,t < M ,

E(κx,t | .(1�→tx)) = θ1 + θ2t+ E(κM,t−1 | .(1�→(t−1)M )) + kx,tex,t1x,t,

Var(κx,t | .(1�→tx)) = (1− kx,tβx1x,t)
[
Var(κM,t−1 | .(1�→(t−1)M )) + σ2

ω

]
;

(4.6)

when 1 < x ≤ M and
∑

x 1x,t < M ,

E(κx,t | .(1�→tx)) = E(κx−1,t | .(1�→tx−1)) + kx,tex,t1x,t,

Var(κx,t | .(1�→tx)) = (1− kx,tβx1x,t)Var(κx−1,t | .(1�→tx−1)),
(4.7)
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where

ex,t =




log(µx,t)− αx − βx
[
θ1 + θ2t+ E(κM,t−1 | .(1�→(t−1)M ))

]
if x = 1

and 1x,t = 1,

log(µx,t)− αx − βxE(κx−1,t | .(1�→tx−1)) if 1 < x ≤ M

and 1x,t = 1,

0 if 1x,t = 0,

kx,t =




β1

β2
1+σ2

ε [Var(κM,t−1|.(1 �→(t−1)M ))+σ2
ω]

−1 if x = 1 and 1x,t = 1,

βx

β2
x+σ2

ε

[
Var(κx−1,t|.(1 �→tx−1)

)
]−1 if 1 < x ≤ M and 1x,t = 1,

0 if 1x,t = 0.

As for any year with
∑

x 1x,t = M , the sequential update procedure in (4.6) and (4.7) is
not necessary. Instead, (4.3) can be implemented directly to obtain E(κM,t | .(1�→tM )) and
Var(κM,t | .(1�→tM )). Note that switching back and forth between filtering and sequential
filtering processes depends on the missing status in each year and is permitted because
“ | .(1�→t)” = “ | .(1�→tM )”, E(κt | .(1�→t)) = E(κM,t | .(1�→tM )), Var(κt | .(1�→t)) = Var(κM,t |
.(1�→tM )), and conditional means and variances of κt and t = (1, κt, t+1)T can be retrieved
from each other. Once E(κM,N | .(1�→NM )) and Var(κM,N | .(1�→NM )) are obtained, an
MCMC iteration of κM is generated and initiates the smoothing process in (4.4) and (4.5)
to finalize the updates of κ. It also worth mentioning that regarding to the initial values
of E(κ0 | α,β, θ1, θ2, σ

2
ε , σ

2
ω) and Var(κ0 | α,β, θ1, θ2, σ

2
ε , σ

2
ω), Pedroza (2006) suggests

using the empirical results from past relevant works while Li et al. (2019) adopts diffuse
initial values. Here, we propose to first restore the missing values, and on this base,
apply the LC model with SVD to retain the starting points.

5 DATA APPLICATION

5.1 Data

The data used for illustration is 1996-2017 Chinese male mortality data from China
Population and Employment Statistics Yearbooks published by the National Bureau of
Statistics of China (2017). Due to the relatively large population size and budget lim-
itation, nationwide censuses were only carried out in the years 2000 and 2010 within
this 22-years window while 1% of national population were surveyed via the multistage
cluster sampling scheme for the years 1995, 2005 and 2015. For the rest of years, surveys
were only performed as a small scale in 0.1% of the national population. This collection
procedure partially explains the missing patterns of the data set. As shown in Figure
1, which depicts the availability of death counts for 2,200 age-year (100 age and 22 year
groups) cells of the nationwide male, all missing values occur at the years with small
scale surveys, and the missing data problem becomes severe in the senility and adolescent
likely due to the minority elders in nature or lower accessibility to teenagers. For such
reasons, we believe that the mortality rates are missing by chance, and the results based
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on the incomplete data should be similar to the ones based on imputed complete data.
We present both estimations and predictions in Section 5.3 to backup this speculation.

Year

A
g
e

Figure 1: Availability of 2,200 age-year exposures and death counts of Chinese male,
where a grey or black cell stands for the observed or missing rate of the corre-
sponding age and year, respectively.

5.2 Initial Values and Computational Specifications

As indicated by Carpenter and Kenward (2013), the rate of convergence of a Gibbs
sampling is sensitive to the initial values when the data set contains missing observations.
To avoid this potential issue, we develop a new searching procedure to train the starting
points for the incomplete data analysis.

First, we use linear interpolations to impute all missing Dx,t’s and Ex,t’s. Supposed
t(0) and t(1) denote two most adjacent years such that t ∈ (t(0), t(1)), and Dx,t(0) and
Dx,t(1) are available, the imputed death count is then given by

Dx,t =

(
t− t(0)

t(1) − t(0)

)
Dx,t(1) +

(
t(1) − t

t(1) − t(0)

)
Dx,t(0) . (5.1)

The similar approach is applied to the missing exposures. Next, based on the complete
data set, the LC model with SVD is implemented to improve the previous imputations,
where (5.1) is now replaced by Dx,t = µ̂x,tEx,t, and µ̂x,t is retrieved from (3.2) and the
SVD parameter estimates. In the final step, we use these SVD estimates to initiate the
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MCMC sampling of the proposed model on the new complete data set. We then choose
the posterior mean of each parameter as its initial value.

For the prior specifications, we set aσ2
α
= bσ2

α
= aσ2

β
= bσ2

β
= 0.01 for the age-related

hyper-parameters, and aζ = bζ = 0.1 and p = 0.5 in the dirac spike. The proposed
values of σ2

x,t’s and the corresponding acceptance rates in the last cycle of a pre-burn-in
sampling are also summarized in Figure 2. It is clear that all proposed densities for
log(µx,t)’s end up with reasonable rates.

σ2
x,t

A
cc
ep
ta
n
ce

R
a
te

Figure 2: The proposed variances and their corresponding acceptance rates in the last
100-iteration cycle of the pre-burn-in sampling.

5.3 Results

To construct the mortality projections of Chinese male, we begin with the steps in
Section 5.2 to explore the initial values, and then fit the proposed model to the original
mortality data without imputations. Based on the generated MCMC sample of 2,000
iterations after 100 burn-ins, we first examine the MCMC convergence in Figure 3,
where the trace plots (left column) of five selected parameters α51, β51, κ5, σ2

ε , and
σ2
ω are presented along with the results (right column) initiated by the SVD estimates.

We can see that the MCMC sample following the suggested initial-value procedure has
overall better convergence in the sense that each MCMC chain only requires around 50
iterations to stabilize. By contrast, the chains without the proper initial-value proposals
may require more iterations as shown in the three bottom right plots.
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α51

β51

κ5

σ2
ε

σ2
ω

Proposed Initial Values SVD Initial Values

Figure 3: The trace plots of five selected parameters α51 (age 50), β51 (age 50), κ5 (year
2000), σ2

ε , and σ2
ω. The left column represents 2,100 iterations (including 100

burn-ins) started with the proposed initials values while the right column uses
the SVD estimates as the initial values.
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αx

Age Age

βx

Age Age

κt

Year Year

Incomplete Data SVD-imputed Complete Data

Figure 4: The posterior means of αx’s, βx’s, and κt’s along with 95% HPD intervals
(dash-dotted lines). The left column presents the results of the proposed model
based on incomplete data while the right one is based on SVD-imputed com-
plete data.
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Age 0

Age 20

Age 40

Age 60

Age 80

Incomplete Data SVD-imputed Complete Data

Figure 5: The mortality projections of selected age groups: 0, 20, 40, 60, and 80 years
old, along with 95% HPD intervals (dash-dotted lines), where the black dots
denote the observed mortality rates, and the red ones are predicted mortality
rates. The left column presents the results of the proposed model based on
incomplete data while the right one is based on SVD-imputed complete data.
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Under the dirac spike setting, the MCMC chains switch back and forth between two
time effect models. Therefore, it is required to determine the structure of (3.3) before any
posterior inferences or predictions. Here, we select a random walk with drift model for
κt since there are 1,881 out of 2,000 iterations (around 94%) with θ2 = 0. Accordingly,
based on these 1,881 iterations, we compute the posterior means of αx’s, βx’s, and κt’s in
Figure 4 (left column), and construct the mortality projections for the years 2017-2040
in Figure 5 (left column) by sampling the posterior predictive distributions of κt and
log(µx,t). Specifically, we obtain an MCMC sample of the future mortality rates via

κ
(j)
t ∼ N(κ

(j)
t−1 + θ

(j)
1 , (σ2

ω)
(j))

and

log(µ
(j)
x,t) ∼ N(α(j)

x + β(j)
x κ

(j)
t , (σ2

ε)
(j)),

where j = 1, 2, . . . , 1881 corresponds to those iterations with θ2 = 0, and t = 23, 24, . . . ,
46 denotes the years 2017-2040. It is noticeable that the estimated posterior distri-
butions of αx’s, βx’s, and κt’s are all concentrated but not smoothing, implying the
proposed sampling algorithm converges well even with this challenging data set. As for
the mortality projections, we observe that the 95% HPD intervals can overall capture
the observed mortality rates in these five selected age groups, and that the rates drop
dramatically from the age groups 0 to 20, but continue gradual increments afterward.
To echo our speculation regarding to the missing mechanism, we also include the results
based on the imputed complete data set in Figures 4 and 5 (right column). Besides the
same time structure is selected (1,865 out of 2,000 iterations with θ2 = 0), the complete
data set yields the comparable estimations and predictions.

6 CONCLUSIONS

In this work, we present the extended PLNLC model along with the new MCMC sam-
pling algorithm, where a more flexible setting of the time structure is considered while
the selection between the full and reduced structures can be done simultaneously with
estimations and predictions. By combining the Kalman and sequential Kalman filters
into the Gibbs sampling, the proposed model can efficiently update κt even when applied
to a challenging data set such as with missing observations or dramatic changes in the
mortality rates of two adjacent ages or years. Since this algorithm only requires log
mortality rates, which can be easily obtained in the Gibbs sampler, to claim as the state
space form, and these rates are also the outputs commonly used in evaluating the good-
ness of fit, our proposed sampling algorithm adds at no additional computational cost.
Besides, with the constraints Li et al. (2019) embedded into the prior specifications, we
have the time effect well interpreted as an aggregation of log mortality rate in that year,
and avoid any potential violations of ergodic conditions in the sampling scheme.

We also view this work as a twins of Li et al. (2019), and fill the gap in mortality
modelling under the Poisson framework. Additionally, via the dirac spike setting, the
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proposed approach and sampling algorithm can be easily adjusted to accommodate a
more complex time effect structure while does not erase the possibility of being simple,
as long as the full model can be expressed as the state space form. It is also worth
pointing out that the sequential update of κt is particularly desirable when the large
administrative region is of interest because its missing observations could be attributed
to few subregions failure to provide the death counts. Although this issue is commonly
addressed by utilizing information from other subregions to retain the estimated total
deaths, this approach ignores the uncertainty from the subregion level. Alternatively,
we can extend the sequential Kalman filter to allow the updates directly based on the
subregion mortality data, that is, we now have the recursive equations designed for the
age-year-and-subregion data. We mark this as a potential future work.
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